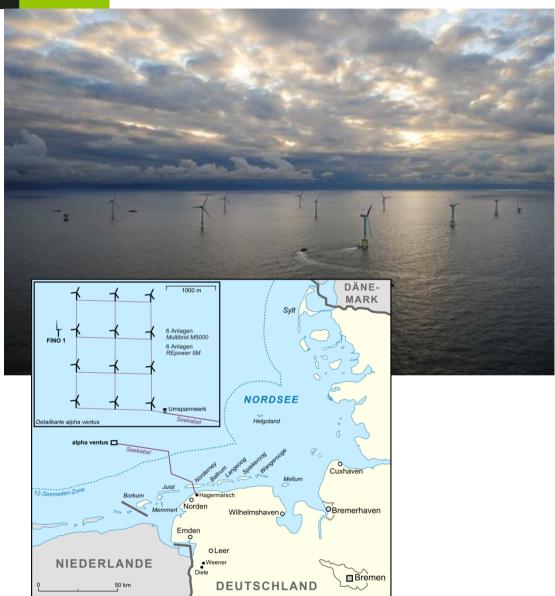
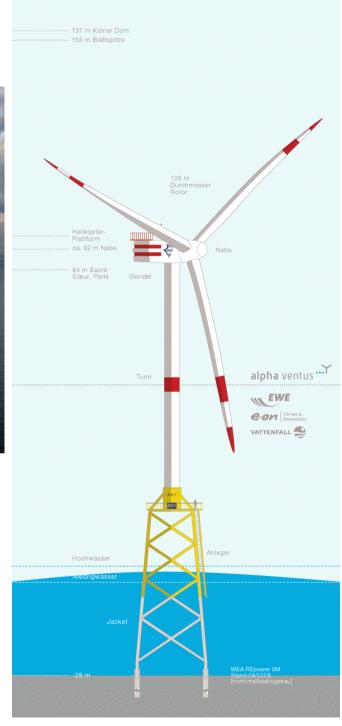


# Wind Offshore – Umwelt Kosten EEG


**KIT** 








### Offshore Alpha Ventus

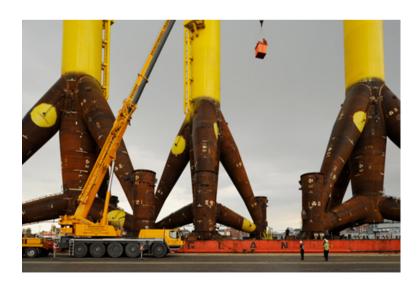







### Offshore Areva (Multibrid) M5000








# Offshore Deutschlandspezifisch



- 45-60 km vor der Küste
- 30-40 m Wassertiefe
- 5 MW Klasse als Einstieg









### Offshore Alpha Ventus







### Offshore Transport



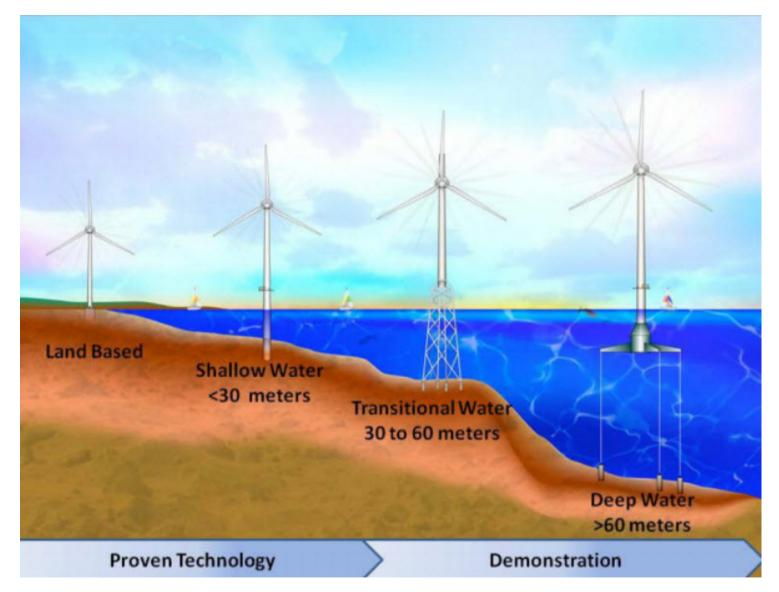








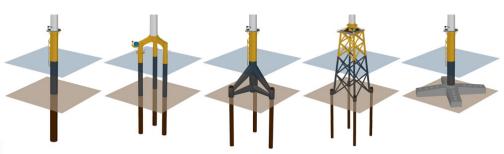


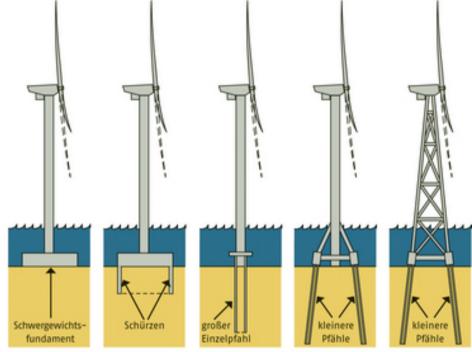

# Offshore Alstom

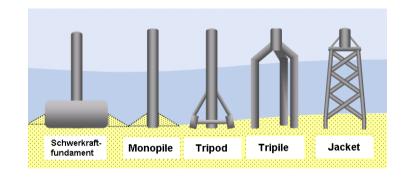







# Offshore Fundamente / Gründungen






# Offshore Gründungen







#### Draufsicht in Höhe des Meeresbodens:



a Flachgründung ohne Schürzen

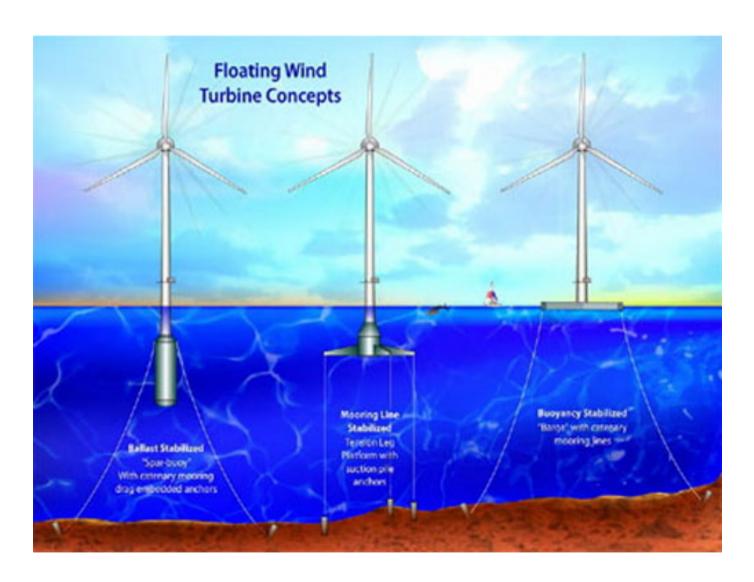


Flachgründung mit Schürzen



Monopilegründung

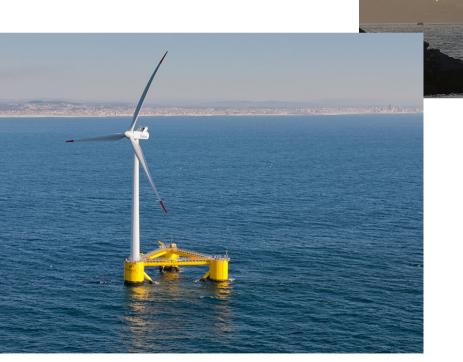



d Tripodgründung



e Jacketgründung











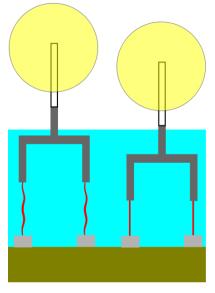

Erste schwimmende Turbine 2009 Norwegen (Hywind)



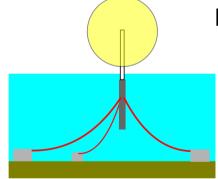
Zweite schwimmende Turbine 2011 Portugal (WindFloat)



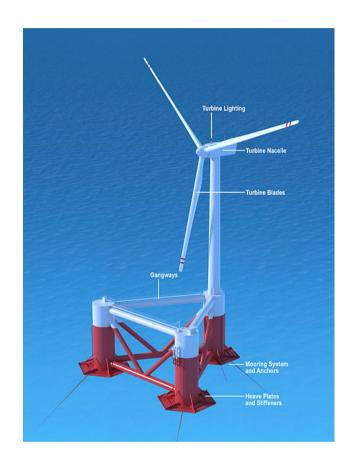



# Offshore Floating - Hywind





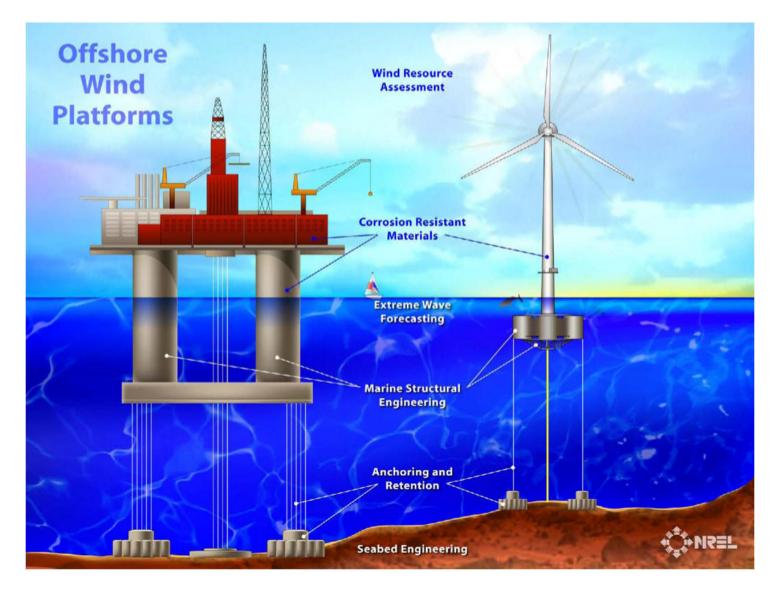




# Offshore Floating



Blue H - Spannung




Hywind - Durchhang 60t zusätzlicher Ballast



WindFloat



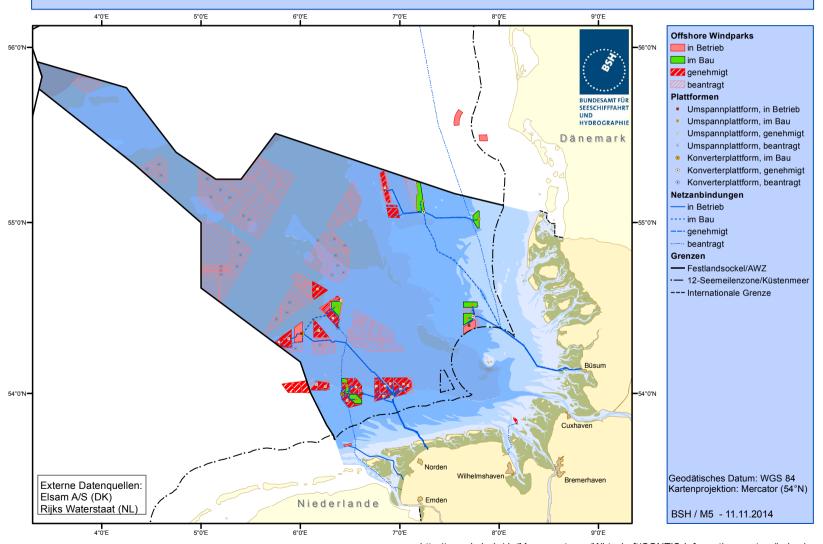








# Offshore Gründungen – Übersicht

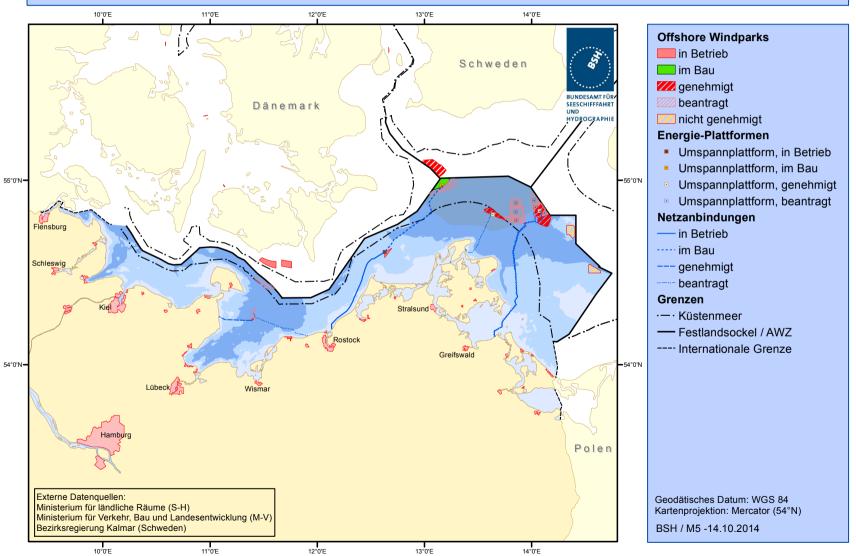

| Fundamenttyp           | Wassertiefe<br>in Meter | Beispiele für die<br>Anwendung | Vorteile                                  | Nachteile                                            |
|------------------------|-------------------------|--------------------------------|-------------------------------------------|------------------------------------------------------|
| Monopile               | bis 20                  | Horns Rev                      | gute Kolksicherung                        | große Rammhammer                                     |
| Jacket                 | 20-50                   | alpha ventus                   | Erfahrungen aus<br>der Ölbranche          | hoher Stahlverbrauch                                 |
| Tripod                 | 20-50                   | alpha ventus                   | kleiner Durchmesser<br>der Pfähle         | nicht einsetzbar bei Stein-<br>hindernissen im Grund |
| Tripile                | 25-40                   | BARD I                         | Leichtbauweise                            | bisher nur eine Testanlage                           |
| Schwerkraftfundament   | bis 10                  | Nysted, Lillgrund              | geringer Stahlverbrauch,<br>keine Rammung | hohe Kosten bei Anwendung in großen Tiefen           |
| Bucket                 | bis 30                  | Testphase                      | keine Rammung                             | wenig Erfahrung                                      |
| Schwimmendes Fundament | 80-700                  | Testphase, Hywind              | für große Wassertiefe<br>geeignet         | wenig Erfahrung                                      |





# Offshore Deutschland - Nordsee

#### **Nordsee: Offshore Windparks**








# Offshore Deutschland - Ostsee

#### **Ostsee: Offshore Windparks**







- Geringe Rauhigkeit bei schwachem (und konstantem) Wind
- Sehr schwache Windscherung
  - » Turmhöhe mit 3/4 des Rotordurchmessers ausreichend
- Weniger Turbulenzen
  - » Höhere Lebensdauer der Anlagen?
- 50% höhere Energieausbeute als an Land



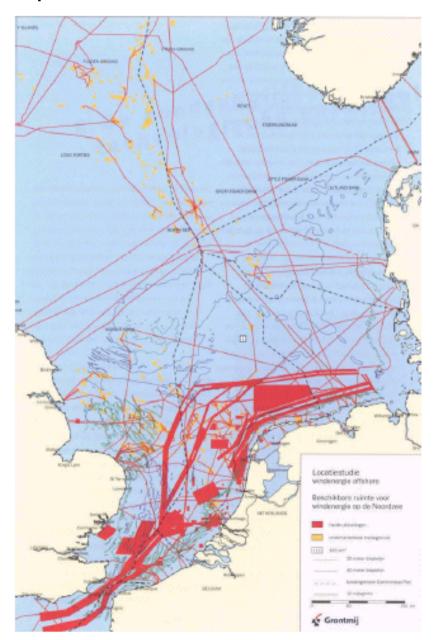


## Dimensionierungsgrundlagen:

- Packeisdruck
- Wellenhöhe
- Beschaffenheit des Seebettes
- Die Größe der Windkraftanlage selbst ist nur bedingt ausschlaggebend



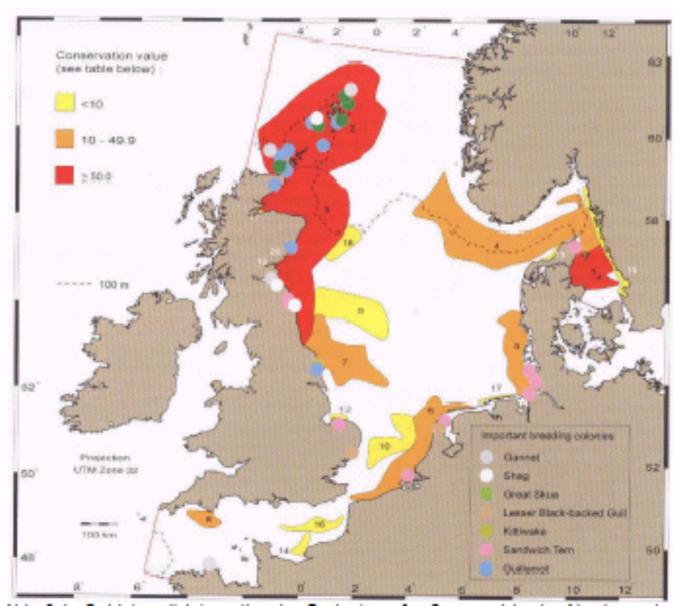



## Eingrabung im Seebett

- » Schutz vor Beschädigungen durch Fischereigerät und Anker
- Bei leichtem Untergrund mittels Hochdruck-Wasserstrahltechnik
- Bei schwerem Untergrund eingraben oder einpflügen






### Offshore Verkehrsproblematik







# Offshore Umwelt







- Wer baut die benötigten Kraftwerke, wenn er auf grund der Windkraft nicht mehr einen Ertrag kalkulieren kann?
- Können 70% des Energiemarktes abgeschottet werden in einem von der Liberalisierung geprägten Umfeld ?





### Europaweit

- 1.662 WEA
- 55 Windparks
- 10 Länder
- 4.995 MW

### • 2012

- 239 WEA
- 1.165 MW
- Ca. 4 Mrd. €

### Ranking (Kapazität)

- 60% GB
- 18% Dänemark
- 8% Belgien
- 6% Deutschland





# Offshore Utgrunden - Schweden

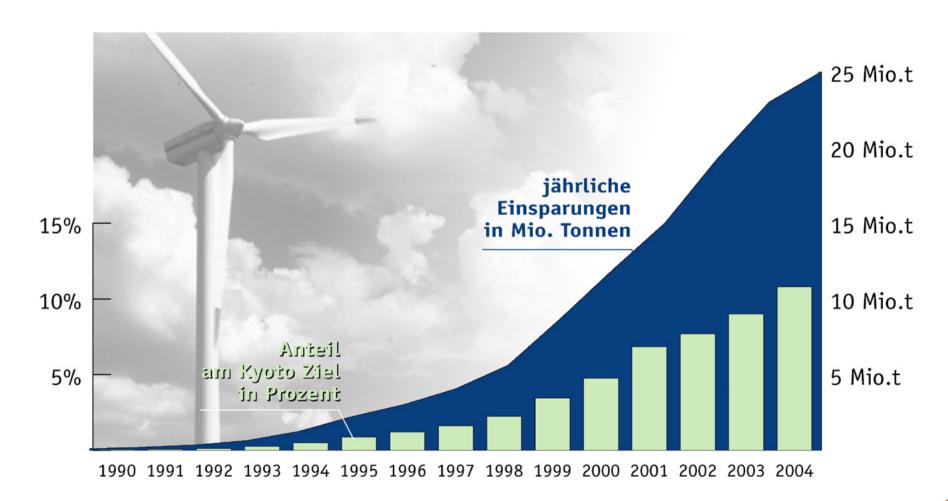






## Umweltbeeinflussung

- Schall
- Reflexion
- Infraschall


## Kosten von Windkraftanlagen

- Invest
- Betrieb
- Kostenstrukturen
- EEG





### CO2-Bilanz







### Ökologische Bilanz








#### Schallemissionen

Maximale Belastung für die an Windenergieanlagen angrenzende Wohnbebauung: 45 Dezibel (dBA)

Durchschnittliche Lärmbelastung in Städten und Durchgangsstraßen: 55-75 dBA (Tag und Nacht)







# Als Discoeffekt wird das Auftreten von Lichtreflexen an den Rotorblättern bezeichnet

- Ursache dieses Effektes: spiegelnde Oberflächen
- wetterabhängig: kann nur an sonnigen Tagen im Nahbereich von WEA bemerkt werden.
- nur zufällig und kurzzeitig wahrnehmbar.
- mit Beeinträchtigungen an einem Ort über mehrere Stunden ist nicht zu rechnen

Aufgrund der Verwendung von matten Farben für die Oberflächen von WEA spielt der Diskoeffekt bei neueren Anlagen keine Rolle mehr





#### Schattenwurf

# Der bei Sonnenschein von den Rotorblättern ausgehende, sich bewegende Schlagschatten.

- Schattenwurfzeiten hängen vom Zusammenspiel der Wetterbedingungen, Windrichtung und Sonnenstand sowie vom Betrieb der Anlage ab.
- > Theoretisch maximal mögliche Einwirkzeit:
  - ⇒ stets Sonnenschein, bestimmte Windrichtung und drehende Rotoren

#### **Reale Einwirkzeit:**

⇒ Berechnung unter normalen, durchschnittlichen Wetterbedingungen

#### **Gewichtete Beschattungsdauer**

⇒ Theoretisch maximal mögliche Einwirkzeit, gewichtet nach Aufenthaltsdauer derAnwohner in den betroffenen Bereichen (Wohnzimmer, Toilette, Veranda,etc.).

Der von Bäumen und Laternen am Wegrand ausgehende Schatten während einer Auto- oder Zugfahrt kann als wesentlich intensiver betrachtet werden.





### Schattenwurf bei der Planung

- ➤ An Standorten, bei denen Schattenschlag auftreten kann, ist schon im Baugenehmigungsverfahren gutachterlich nachzuweisen, dass Nachbarn nicht durch unzumutbare Schattenemissionen beeinträchtigt werden.
- Zur Vermeidung von Schlagschatten ist es auch möglich Steuerungselemente zu installieren, welche die Anlagen bei Eintreten entsprechender Witterungsbedingungen automatisch abstellen

In Schleswig Holstein gilt ein reales Beschattungsaufkommen von 15h/Jahr als maximal zumutbar. Mit dem Grenzwert von 30h/Jahr gewichteter Beschattungsdauer wird dieser Grenzwert in der Regel weit unterschritten.

Quelle: Studie - Belästigung durch periodischen Schattenwurf von Windenergieanlagen,Universität Kiel, 2000, Staatliches Umweltamt Schleswig.





# Als Infraschall bezeichnet man Luftschallwellen unterhalb des menschlichen Hörbereichs.

Menschlicher Hörbereich: 20 Hz - 20.000 Hz

Die ständige Präsenz von Infraschall im menschlichen Lebens- und Arbeitsbereich führte schon früh zu einer ausführlichen Untersuchung durch das Bundesgesundheitsamt. Auch beschäftigte sich die Berufsgenossenschaft für Feinmechanik und Elektronik mit den Auswirkungen von Infraschall auf den Menschen.

FAZIT: Von einer unterschwelligen, gesundheitsschädlichen Gefährdung durch Infraschall ist nicht auszugehen!

Quelle: Bundesgesundheitsamt (1982), Zeitschrift für Lärmbekämpfung (1999)





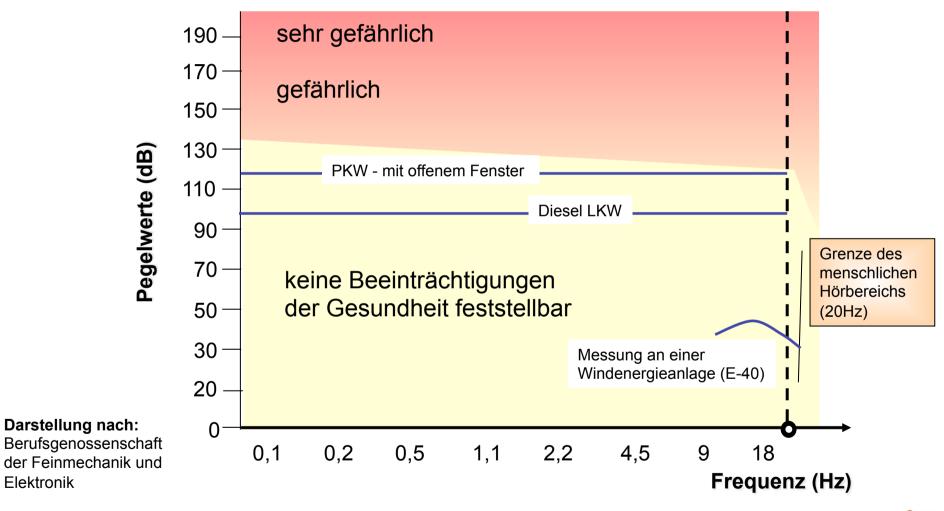
### Infraschall - Vergleiche

Technische Quellen: Straßenverkehr, Flugzeuge, Discotheken,

Heizungs- und Klimaanlagen, Industriearbeitsplätze, etc.

Natürliche Quellen : Gewitter, Erdbeben, Wasserfälle und Meeresbrandung, etc.

| Geräuschquellen<br>(Schalldruckpegel im Bereich 1-20 Hz) | Infraschall-<br>pegel dB(IL) | Hörschall-<br>pegel dB(A) |
|----------------------------------------------------------|------------------------------|---------------------------|
| Elektro-Hochofen                                         | 117                          | 102                       |
| PKW (Seitenfenster geöffnet)                             | 126                          | 83                        |
| Schnellzug - Schlafwagenabteil, Fenster offen            | 107                          | 55                        |
| Diesel LKW (Fenster geschlossen)                         | 103                          | 96                        |
| Büroräume                                                | 97                           | 52                        |
| Büroräume - Lüftungsanlage                               | 80                           | 33                        |
| WEA 500kW in 300m Abstand                                | 67-77                        | 40                        |
| WEA 500kW in 500m Abstand                                | 63-73                        | 33                        |


Quelle: Berufsgenossenschaft für Feinmechanik und Elektronik; Magnuson & Malmquist (Infraschall am Arbeitsplatz); Exposé über Infraschall, Dipl.-Ing. A.Buhmann





Elektronik

#### Infraschall - Gesundheit






# Infraschall - Messungen

#### **Quellen von Infraschall:**

- ⇒ aerodynamisch: Schräganströmung des Rotors, Wechselwirkung mit dem Turm
- ⇒ mechanisch: Schwingungen der Anlage bzw. Anlagenkomponenten



Quelle: KÖTTER Consulting Engineers GmbH

# Messung an einer E-40 im Auftrag von ENERCON.

Bei einer Windgeschwindigkeit zwischen sieben und acht Metern pro Sekunde und einer Leistung von 250 bis 330 Kilowatt wurden in einer Entfernung von 600 Metern keine durch die Windenergieanlage verursachten Infraschall-Immissionen gemessen.





# Weitere Beeinflussungen

- Schall und Infraschall Offshore?
- Bruch des Rotorsystems
- Feuer
  - Höhe der WKA!
- Vogelschlag?
- Fledermäuse?





# Kostenfaktoren

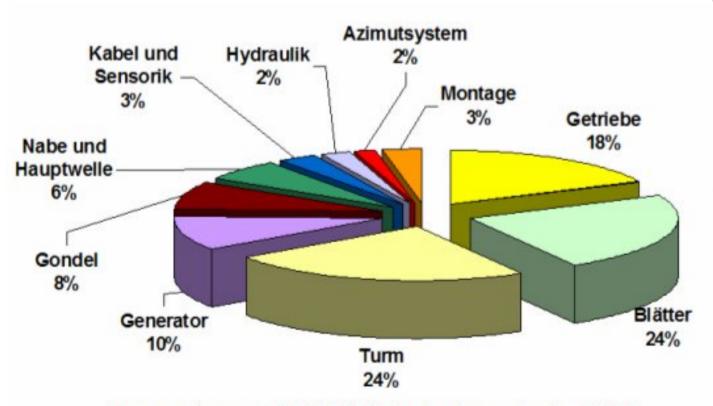
# Wind

# Investition

- Projektentwicklung
- Technische Investition
- Finanzierung

# Betrieb

- Betriebskosten
- Kapitalkosten


# Leistung

- Normierte Leistungskurve, Verfügbarkeit
- Standorteinflüsse, Parkaufstellung
- Verfügbarkeit, Netzleistungsfähigkeit





# Kostenstruktur der WKA (ca. 800-1.000 €/kW)



Kostenstruktur von 1,2 MW Windkraftanlagen. Quelle: DEWI

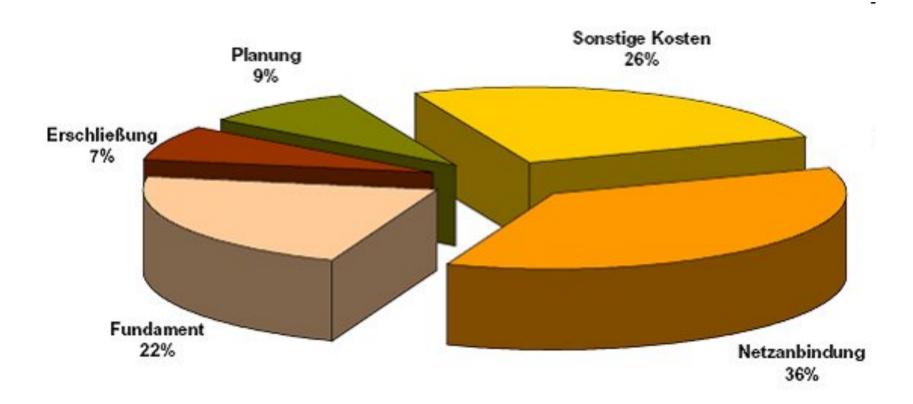




# Preise pro kW sind fehlerhaft!

# Zwei Anlagen

- Vestas V39, eine 600 kW-Anlage mit 39 m
   Rotordurchmesser
- Vestas V47, eine 660 kW-Anlage mit 47 m
   Rotordurchmesser

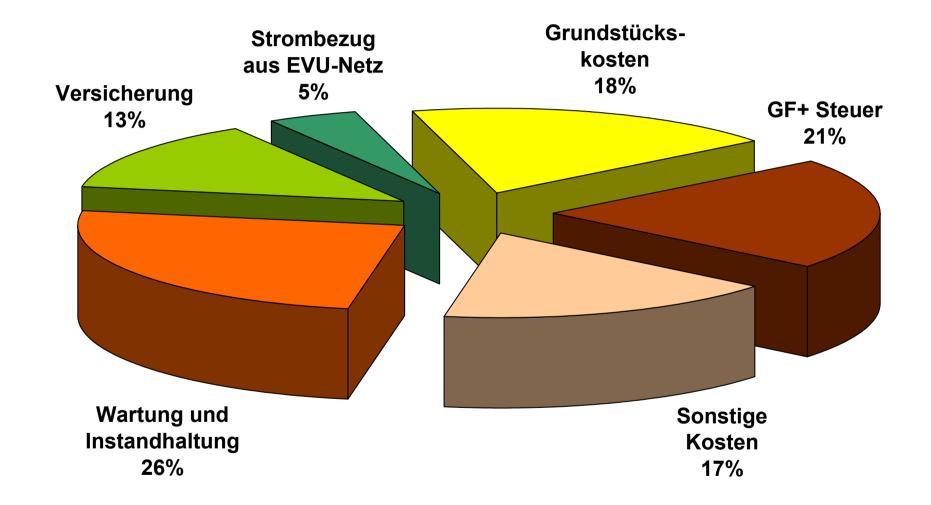

# V47 hat 45,2% mehr Ertrag als V39

- Preis +33%
- Preis pro KW +21%
- Preis pro m2 -8,4%
- Preis pro kWh -8,4%





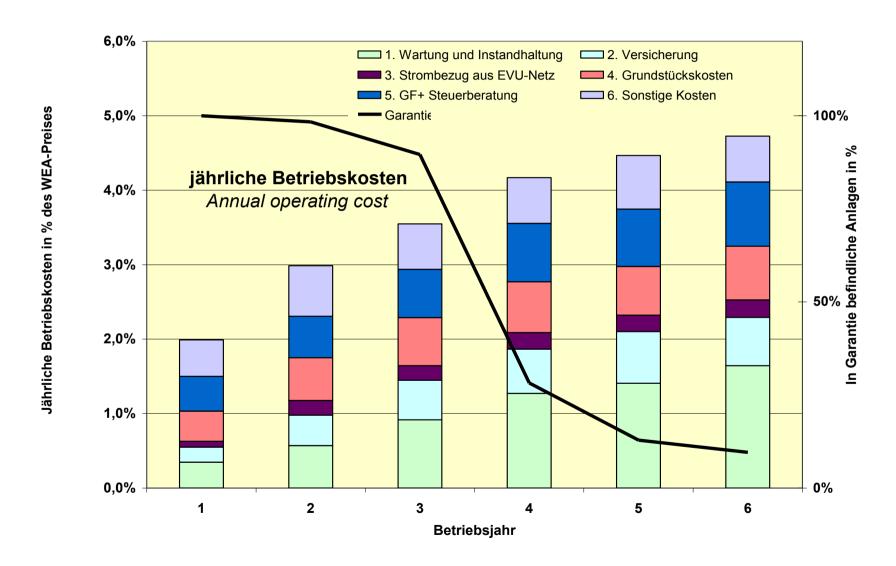
# Investitionsnebenkosten (30% Anlagenkosten)




Investitionsnebenkosten über die Jahre 1994-2001. Quelle: DEWI






# Betriebskosten







## Jährliche Betriebskosten







#### **DEWI Studie 2002**

#### **Gesamte Betriebskosten**

1. Dekade: 4,8% der WEA-Investition = 24% der Einspeiseerlöse

2. Dekade: 6,6% der WEA-Investition = 33% der Einspeiseerlöse

#### **Davon Instandhaltung**

1. Dekade: 1,8% der WEA-Investition = 9% der Einspeiseerlöse

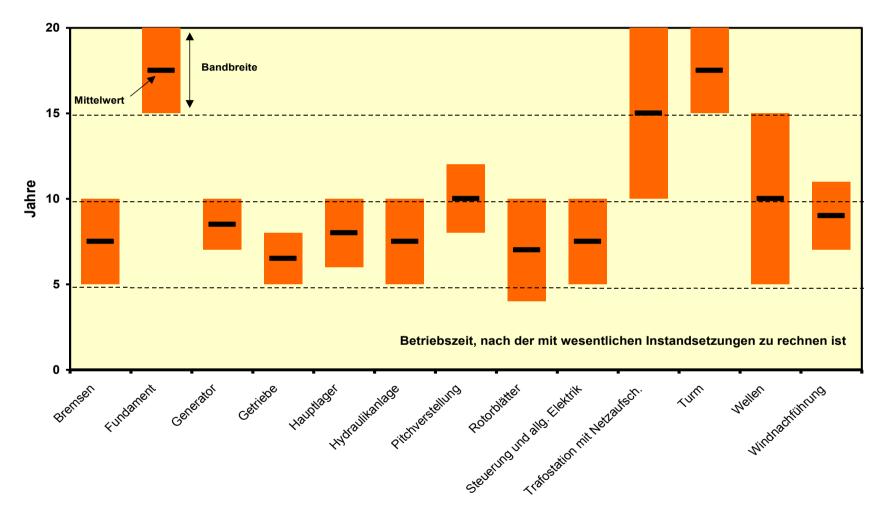
2. Dekade: 3,6% der WEA-Investition = 18% der Einspeiseerlöse

#### **Annahmen:**

WEA-Investition: 895 €/kW

Preissteigerung: 1%/a

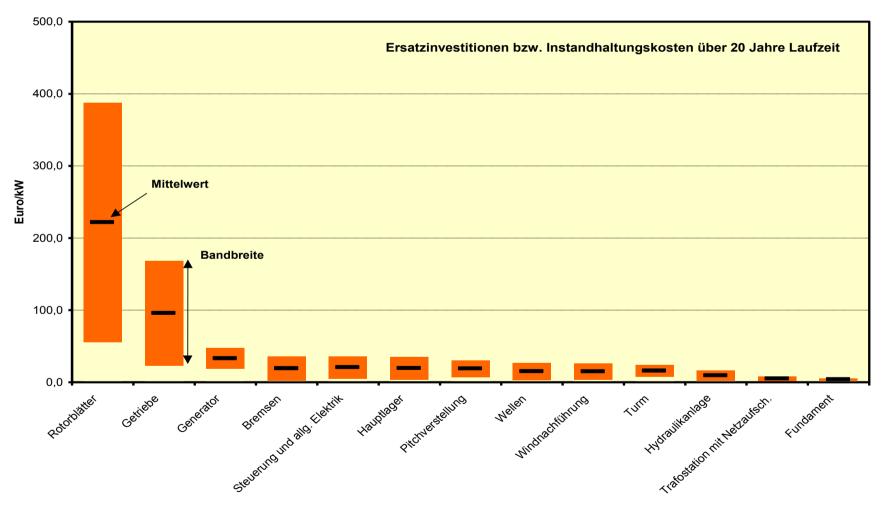
Ausnutzung 2.000 h/a


Einspeisevergütung: 9 ct/kWh

Ersatzinvestitionen: 54% der WEA-Investition (= 483 €/kW)






# Häufigkeit von Instandsetzung

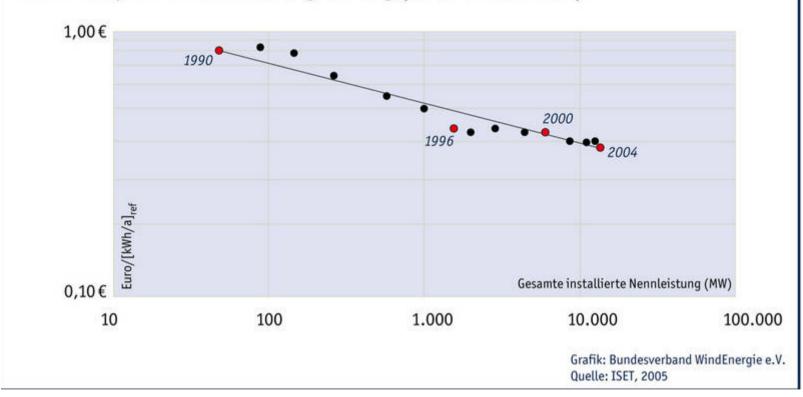






## Ersatzinvestitionen








# Windkraftanlagen werden immer günstiger

Lernkurve Windenergie.

WEA-Preis pro kWh Jahresenergieertrag (Referenzstandort)





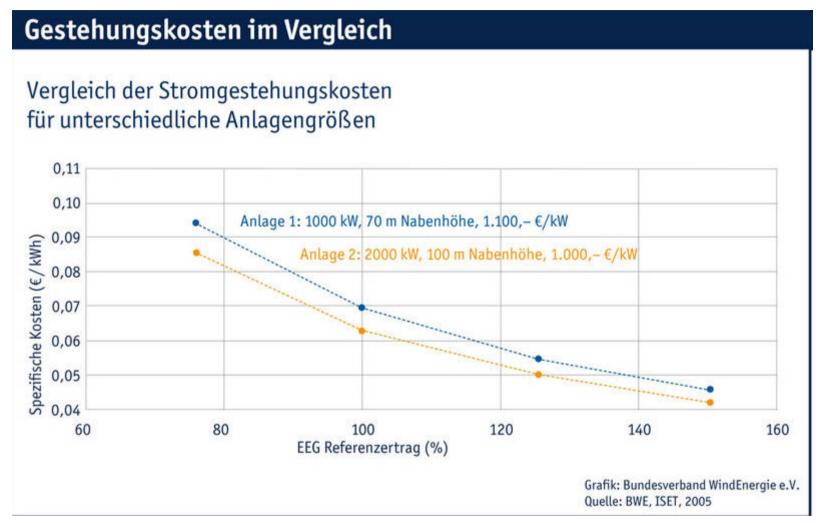


#### Referenzstandort

- Definition laut EEG
  - 30 m Höhe
  - 5,5 m/s Windgeschwindigkeit im Jahresmittel.
- Beispiel mit typischer Windverteilung:
  - 1,5 MW
  - 100m Turmhöhe
  - 4,5 Mio. kWh






# Gestehungskosten

#### Gestehungskosten im Vergleich Windenergie auf dem Weg zur günstigsten Stromquelle 0,11 Erdgas (GuD) 0,10 Kernenergie 0,09 Steinkohle Spezifische Kosten (€/kWh) Braunkohle 80 100 140 60 120 160 EEG Referenzertrag (%) Grafik: Bundesverband WindEnergie e.V. Quelle: ISET, 2005





# Gestehungskosten Anlagengröße







# **Annuität**

$$A = \frac{\left(1+p\right)^n \cdot p}{\left(1+p\right)^n - 1}$$

mit:

A = jälırliche Kapitalkosten [%]

p = Realzins (inflationsbereinigt)[%]

n = Kapitalrückführungsdauer[a]

|       | Zinssatz p [%] |          |          |          |          |          |
|-------|----------------|----------|----------|----------|----------|----------|
| n [a] | 3              | 4        | 5        | 6        | 7        | 8        |
| 5     | 21,840 %       | 22,460 % | 23,100 % | 23,740 % | 24,390 % | 25,050 % |
| 10    | 11,720 %       | 12,330 % | 12,950 % | 13,590 % | 14,240 % | 14,900 % |
| 15    | 8,337 %        | 8,994 %  | 9,634 %  | 10,300 % | 10,980 % | 11,680 % |
| 20    | 6,722 %        | 7,358 %  | 8,024 %  | 8,719 %  | 9,439 %  | 10,190 % |
| 25    | 5,743 %        | 6,401 %  | 7,095 %  | 7,823 %  | 8,581 %  | 9,368 %  |
| 30    | 5,102 %        | 5,783 %  | 6,505 %  | 7,265 %  | 8,059 %  | 8,883 %  |
| 35    | 4,654 %        | 5,358 %  | 6,107 %  | 6,897 %  | 7,723 %  | 8,580 %  |
| 40    | 4,326 %        | 5,052 %  | 5,828 %  | 6,646 %  | 7,501 %  | 8,386 %  |

0,04 **–** 0,13 €/kW







# Auswirkungen EEG-Novelle und weiterer Aspekte auf Windenergieausbau

Vergütungshöhe für 2012 bleibt unverändert bei 8,93 Cent/kWh

Um ein Jahr verlängerter Systemdienstleistungsbonus (bis 31.12.2014)

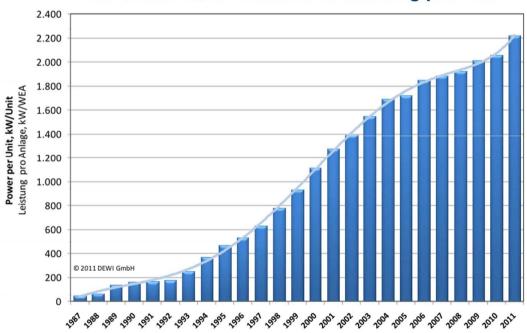
Bonus für Repowering bleibt erhalten

Erhöhung der Degression von 1 % auf 1,5 % jährlich

Verringerung baurechtlicher Hürden (Abstandsregelungen und Höhenbegrenzungen)

Ankündigung zügigerer Genehmigungsverfahren

Umfangreiche Ausweisungen neuer Windflächen








#### Ausbau der Windenergie

#### **Durchschnittlich installierte Leistung pro WEA**



- » Anlagen werden:
  - » Höher
  - » Größer
  - » Leistungsstärker
  - » Besser integrierbar

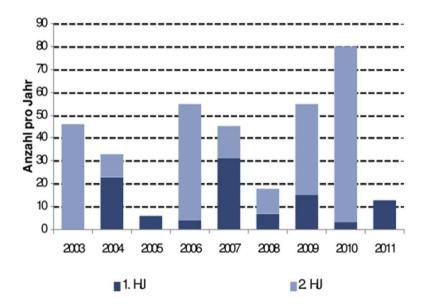
#### Aber auch:

- » Leiser
- » Langsamer
- » Mit neuer Befeuerung nachts unsichtbar





# **EEG – 2012**


#### Windkraft Onshore – Repowering VKU



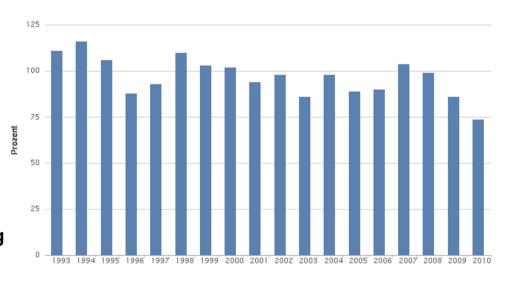
## Repowering: Alternative zur Neuplanung

- » Möglichkeit der Nutzung sehr guter Standorte
- » Erhöhung der Akzeptanz, da weniger und leisere Anlagen
- » Leistungsbegrenzung auf maximal 5fache Leistung entfällt im EEG 2012
- » In Schleswig-Holstein ist Repowering auch außerhalb von Vorrangflächen möglich
- » Bisher sehr verhaltenes Repowering2010: 6,9 MW2011 1HJ: 42 MW aber 793 MW neu

#### **Anzahl repowerter Anlagen**









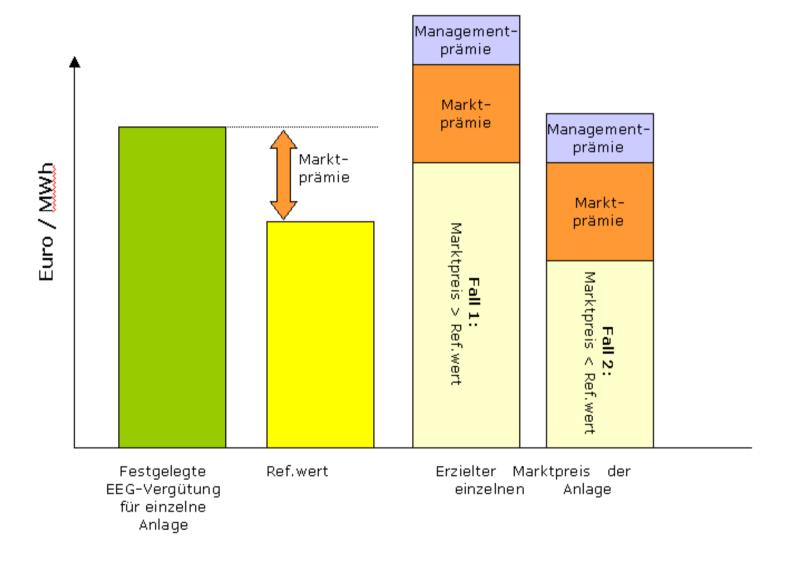

#### Einflussfaktoren Windenergienutzung

- » Winddargebot
- » Förderung
- » Häufigkeit von Abregelungen bei Netzüberlastung
- » Ausgleichzahlungen
- » Strompreis
- » Regelung für Direktvermarktung

#### Windjahr in Prozent zum langjährigen Mittel








- Differenz zwischen der für jede Energieform festgelegten Vergütung und dem monatlich ermittelten durchschnittlichen Börsenpreis für Strom (EPEX)
- Marktprämie = EEG (MW-Pm)
  - MW: Monatsmittelwert Marktpreis
  - Pm: Managementprämie





# EEG – 2012 Marktprämie







| Höhe d<br>Jahr | ler Managementprämie<br>Wind on- und offshore, Solar | Wasserkraft, Deponiegas,<br>Klärgas, Grubengas,<br>Biomasse, Geothermie |
|----------------|------------------------------------------------------|-------------------------------------------------------------------------|
| 2012           | 1,2 ct/kWh                                           | 0,3 ct/kWh                                                              |
| 2013           | 1,0 ct/kWh                                           | 0,275 ct/kWh                                                            |
| 2014           | 0,85 ct/kWh                                          | 0,25 ct/kWh                                                             |
| 2015           | 0.7 ct/kWh                                           | 0,225 ct/kWh                                                            |





- Weiterer Ausbau der Erneuerbaren Energien erfolgt in einem gesetzlich festgelegten Ausbaukorridor: 40 bis 45 Prozent im Jahre 2025, 55 bis 60 Prozent im Jahr 2035.
- Photovoltaik: Jetzt geltende Regelung (u.a. "atmender Deckel") wird beibehalten
- Biomasse: Begrenzung des Zubaus auf überwiegend Abfall- und Reststoffe
- Wind an Land: Senken der Fördersätze, insbesondere bei windstarken Standorten
- Wind an See: Ausbaupfad auf 6,5 GW für 2020 angepasst, bzw. 15 GW bis 2030
- Wasserkraft: Regelungen werden beibehalten





- Ab 2018 Ermittlung der Förderhöhe über Ausschreibungen mit vorheriger Prüfung in Pilotprojekt
- Degression der Einspeisevergütungen sowie stärker marktwirtschaftlich orientierte Förderung; Streichung von Grünstromprivileg sowie Überprüfung und weitgehende Streichung von Bonusregelungen
- Verpflichtende Direktvermarktung für Neuanlagen ab 2017 (bis dahin nur für Neuanlagen ab 5 MW)
- Beibehaltung des Einspeisevorrangs für erneuerbare Energien mit Prüfung, ob große Erzeuger von Strom aus erneuerbaren Energien einen Grundlastanteil ihrer Maximaleinspeisung garantieren müssen (schrittweise Einrichtung einer "virtuellen Grundlastfähigkeit" durch Speicher, abschaltbare Lasten, fossile Kraftwerke, nachfrageabhängig regelbare erneuerbare Energien)
- Europarechtskonforme Ausgestaltung des EEG unter Berücksichtigung der internationalen Wettbewerbsfähigkeit der deutschen Industrie (Erhaltung und zukunftsfähige Weiterentwicklung der Besonderen Ausgleichsregelung)





- 8,9 ct für 5 Jahre
- 4,95 ct Grundvergütung (15 Jahre)
- Verpflichtung zur Direktvermarktung
  - > 500 kW bzw. > 100 kW 2016
- Managementprämie integriert
- Kein Grünstromprivileg
- Kein Systemdienstleistungsbonus
- Kein Repoweringbonus
- Ausbaukorridor 2.500 kW Netto
- Ausschreibung ab 2017/2018
- Alle Anlagen fernsteuerbar
- EEG Umlage auf Eigenverbrauch/Nahverbrauch





# EEG – 2014 ...

#### Realisierung Wind? Zeitfaktor?



#### Politischer Wille und wirtschaftliche Realität



